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SUMMARY

Numerically solving the incompressible Navier-Stokes equations is known to be time-
consuming and expensive. Testing of the INS3D computer code, which solves these equations
with the use of the pseudocompressibility method, shows this method to be an efficient way to
obtain the steady-state solution. The effects of the waves introduced by the pseudocompressibility
method are analyzed and criteria are set and tested for the choice of the pseudocompressibility
parameter which governs the artificial sound speed. The code is tested using laminar flow over a
two-dimensional backward-facing step, and laminar flow over a two-dimensional circular cylinder.
The results of the computations over the backward-facing step are in excellent agreement with
experimental results. The transient solution of the flow over the cylinder impulsively started
from rest is in good agreement with experimental results. However, the computed frequency of
periodic shedding of vortices behind the cylinder is not in agreement with the experimental value.
For a three-dimensional test case, computations were conducted for a cylinder-end wall junction.
The saddle point separation and horseshoe vortex system appear in the computed flow field. The
solution also shows secondary vortex filaments which wrap around the cylinder and spiral up in
the wake.

INTRODUCTION

Computational fluid dynamics (CFD) is rapidly advancing both as a tool for theoretical
study and as a tool for engineering design. This is partly due to the increasing power and
efficiency of the high-speed supercomputer. It has, therefore, become feasible to numerically
simulate complicated fluid-flow phenomena associated with complex geometries. Thus, one of the
primary pacing items in computational fluid dynamics research is the development of new solution
methodologies (ref. 1). This paper is the result of research at NASA Ames Research Center in
coordination with the development of a three-dimensional, incompressible, Navier-Stokes solver
utilizing primitive variables and generalized curvilinear coordinates.

PURPOSE OF THE STUDY

There are many important incompressible flow problems in engineering applications,
some of which include hydrodynamics, liquid fuel flows in propulsion, and low-speed air flow.
When the flow is two-dimensional in nature, there are several efficient methods for numerically

solving the incompressible Navier-Stokes equations. These flow solvers do not signifir_ntly impact
a supercomputer's memory and time constraints because two-dimensional flow fields have small
data base requirements, e.g., the stream function-vorticity |brmulation is one popular method
(refs. 2-5). However, many incompressible viscous flows are highly three-dimensional in nature
and there is no staightforward three-dimensional extension to this method; therefore, the use
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of primitive variables (velocities and pressure) is preferred. There are several three-dimensional
codes which solve the compressible Navier-Stokes equations, examples of which are given by
references 6 - 9. Since the speed of sound approaches infinity at the incompressible limit, it is
not computationally efficient to use these codes for computing incompressible flows. Therefore,
there is a need for an efficient three-dimensional incompressible Navier-Stokes solver which can
be used for a realistic three-dimensional geometry.

SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

One of the major concerns in numerically solving the incompressible Navier-Stokes equa-
tions in primitive variable form is the method used for evaluating the pressure. The pressure does
not explicitly appear in the continuity equation yet it acts as a dynamic parameter in ensur-
ing that continuity is satisfied, and that the velocity field is divergence-free. One method that

was developed by Harlow and Welch (ref. 10), for use with their MAC (marker and cell) code,
involves the solution of a Poisson equation for pressure. By taking the divergence of the mo-
mentum equations, a Poisson equation in pressure is derived. In using this method, the normal
time-advancement would be as follows: the momentum equations are solved for the velocities,
then the Poisson equation is solved for the pressure which ensures a divergence-free flow at the
next time-step. The solution of the Poisson equation usually requires a relaxation scheme to
iterate on pressure until the divergence-free condition is reasonably satisfied. This method has

been widely used, particularly for solving two-dimensional problems, (refs. 11 - 17). However,
the solution of the Poisson equation can be prohibitively time-consuming for three-dimensional
problems.

In his 1968 paper, Chorin (ref. 18) presents the basis for applying the fractional step
method in solving the incompressible Navier-Stokes equations. The theoretical basis can be found

in another paper by Chorin (ref. 19) and in the book by Temam (ref. 20). The essential mechanics
are as follows: in the computation the time-step is split into two levels. In the first level, a modified
set of momentum equations are solved for an auxiliary velocity field. The modification to the
momentum equations is made by removing the pressure gradient. All that remains is to _,'.olve for
the pressure which will map the auxiliary velocity into a divergence-free field. For this Chorin

produces two equations, one in which the new velocity is calculated from the auxiliary velocity
minus the pressure gradient, and in the second equation the change of pressure is calculated from
the divergence of the new velocity. These have the dimensionless form

hA-1 aux 0 n+l

u i = u i - At_xP (1.1)

pn+l = p,, _ )tDiv(un+l) (1.2)

where A is a constant chosen to facilitate convergence. These can be solved by iteration and result

in a divergence-free flow field. By substituting equation (1.1) into equation (1.2) it is seen that
this is equivalent to solving the Poisson equation in pressure

1

V2p= _-_Div(u au_) (1.3)

If the convective and viscous terms from which the auxiliary field was computed were substituted
into equation (1.3) then the resulting Poisson equation would be that of the previous method. So it
can be seen that by performing the decomposition of the momentum equations and by computing
the auxiliary field first results in a savings in the required number of floating point operations in

each iteration. This method has been used by Kim and Moin (ref. 21) with some success to write
a three-dimensional code in Cartesian coordinates which solves the Poisson equation in equation



(1.3) with a direct method. However, it is still preferable to avoid solving a Poisson equation in
three-dimensional curvilinear coordinates as this would take more computing time than is desired.

To avoid the solution of a Poisson equation in pressure, there is the artificial compress-
ibility method as first developed by Chorin (ref. 22). In this method, a time derivative of pressure
is added to the continuity equation

019
+ _Oui = 0 (1.4)

Ot Oxi

Together with the momentum equations this forms a hyperbolic-type system of equations. The
equations can then be simultaneously advanced in time using a suitable algorithm. As the so-
lution converges, the time derivative of pressure approaches zero and continuity is satisfied in
the steady state. The artificial compressibility introduces pressure waves of finite speed into the
incompressible flow, whose speed of sound would otherwise be infinite. These waves die out as

the steady state is reached. This method was combined by Steger and Kulter (ref. 23) with an
implicit approximate factorization scheme of Beam and Warming (ref. 24) for the compulation
of vortex wakes. This combination is known as the method of pseudocompressibility and is found
to be computationally efficient. Because the continuity equation is not satisfied until the solution
is converged to a steady state, this method is not time-accurate. But by temporarily relaxing
the requirement of continuity, the steady state solution can be obtained at a significant savings
in computing time. The use of this method currently appears to be the most viable approach to
obtain incompressible steady state solutions for a complex three-dimensional geometry.

Pseudocompressibility was chosen by Kwak et al (refs. 25-26) in developing an efficient
and robust code called INS3D, a three-dimensional, incompressible viscous flow solver in gener-
alized curvilinear coordinates. This code was the main tool used in this research in an effort to

study the best method for solving the incompressible Navier-Stokes equations.
The outline of this papers is given below. In the second section, the governing equations

will be presented. The finite-difference algorithm will be described in the third section and the
method of pseudocompressibility will be discussed further in the fourth section. Computed results
will be presented in the fifth section for several test problems. These include a two-dimensional
backward-facing step, flow behind a two-dimensional circular cylinder, and the flow around a
cylinder-plate junction.

GOVERNING EQUATIONS

Incompressible Navier-Stokes Equations

The equations governing unsteady, three-dimensional, incompressible flow with constant
density are presented. In these equations t is time; x, y, and z are the Cartesian coordinates; u, v,
and w are the corresponding velocity components; p is the pressure; and rij is the viscous stress
tensor. The equations have been written in dimensionless form using the following dimensionless
variables

--_ Re -I

u v w
- ,_ - ,dJ -

tLre f Ure f Ure f

__ x y z- -
Xref Xref Xref

_ turef __ p- Pre.f - 7"ij
Xref Pttref 2 ' rij =' pttref2

Z
-- ,h --

• refUref PUref 2

(2.1)
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The subscript ref denotes reference quantities and in the following equations the tildes
been dropped for convenience.

The momentum equations are given by

(') have

_,i+ _(_ - Cv)+ (1- L) + _(o- ¢_,)= o (2.2)

and the continuity equation is
au 0v 0w

+ _ + - 0 (2.3)0--_ Ozcry

where

L'u  p] vu]iwu]= I uv ]= v 2+p _= wv

uw L vw w 2 + p

"l'x _

Txy /v _-

Txz

Tyx

Tyy gv _-

Tyz

Tzx

Tzy

Tgz

To implement the pseudocompressibility scheme the continuity equation is replaced with

(2.4)

op Z(ou ov aw0-7+ az ¢ _ + _) : o (2.5)

Here fl is the pseudo compressibility parameter which is chosen to facilitate fast convergence and
will be discussed in more detail later.

Introducing Cartesian tensor notation, the viscous stress tensor can be written as

r_j = 2uSij - Ri:. (2.6)

Here, t/ is the kinematic viscosity, Si) is the strain rate tensor, and Rij is the Reynolds stress.
These are given by

1 cgu, Ou3) (2.7)

Ri3 = _ Rkk_ij - 2utSij. (2.8)

where ui = u,v, or w for i = 1, 2, or 3, respectively, and xi = x,y, or z for i = 1, 2, or 3,
respectively. The normal component of the Reynolds stress is Rkk and ut is the turbulent eddy

viscosity. By substituting equations (2.7) and (2.8) into (2.6) and including the normal stress,
Rkk, in the pressure, the viscous stress tensor becomes

aui Oui )
_'J : (" + "')(b-_ + _x, " (2.9)

In the remainder of this paper the total viscosity, (u + ut), will be represented simply by p.
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By combining equations (2.2) and (2.5), the governing equations are written as one
vector equation

Ot + (E - Eo) + (F - Fo) + (a - Go) = 0 (2.10)

where

o=!}
E u2 + P F =- v_

uv + p

UW IJW

C = wu (2.11)
wv

w2+p

[0]r01r  r°]Tyx Tzx

Eo= r_ F,,= | | Go=TzY I Tzy

rzz L ryz J L rzz

Coordinate Transformation

To perform calculations on three-dimensional arbitrarily shaped geometries, the follow-
ing generalized independent variables are introduced which transform the physical coordinates
into general curvilinear coordinates

r=t

_=_(x,y,z,t) (2.12)

r/= r/(_,y,z,t)
= _(z,u,z,t)

The spatial and time derivatives become

0 O_ O Or/ 0 as" o o_j O
- +___+ -

Ozi Ozi a_ oxi oft oxi of oxi a_j

a a a_j a
- +

Ot Or at o_j

(2.13)

Here the Jacobian of the transformation is defined

g el;
a(z,u,z)

_X

-- l'lx

fz

r/u r/z (2.14)
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where
a_ an

G = a_' ,7_ = ay' etc.

Before the transformation is applied, equation (2.10) is written

i)----_D+ Hi = 0; Hi = F.
G_

(2.15)

Applying the transformation to this equation yields

a a_ a a_j a
--D + D + Hi = 0 (2.16)
at at O_j Ozi 03_j

After dividing through by the Jacobian, this can be decomposed into a conservative term and a
remainder

O D 0 DO_j 1 O_j. ,

_ ( d- ) + O-_j ( J at + J -a-_zi " ' )

____ 1 0 I O0__ Hi 0_0_(I O_j_ (2.17)=D (_) + D_j(j )+ a:, Taxi'

It can be shown that the nonconservative remainder term on the right-hand side of equation
(2.17) is equal to zero. Thus the governing equation, in an expanded form is

0 D
0_O{ j[_tD + _:(E - E.) + _(F - F.) + _.(G - G.)]}

03 1

+ _{ j[rhD + r/.(E - E_) + r/y(F - F.) + r/z(G - G_)]}

03 1

+ _{jl_,D + _:(E-E.) + _(F-F.) + _.(a- G.)]}

=0

(2.18)

This can be rewritten in the form

where

[ 6p+G#u+_,#v+ Gaw 1
1 ] 6,, + ¢::(,,_+ p) + ¢_,_,,+ ¢_,, ]= J I 6,, + ¢_,,v+ ¢,,(v_ + p) + ¢,,,_v

t.6w + Guw + _,,w + G(w 2 + p)

=0 (2.19)
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Now, the contravariant velocities, U, V, and W without metric normalization are defined as

Using these, E, F, and (_ become

U = _t + Gu + _yv + Gw

V = rh + rlzu + rlyv + rlzW

W = ft + f_u + fyv + f_w.

1

1

_U + _t(P- t_)

uU + _p

vU + _yp

wU + _zp

Zv + _(p- _)
uV + rlzp

vV + rlyP

wV + rlzp

_w + _,(p- _)
uW + f_p

vW + fyp

wW + fzP

1

1

_',, = -_ [_7:_E,, + rlyF,, + rl_G,,]

1

G, : _ [f:E, + _'yF, + fzG,_]

By using the values for E_ in equation (2.11),/_o becomes

0 ]1 _zrzz + _yryz + _zrzz

E_ = j rl_r_y + rl_ryy + rlzr_ ]
fzrxz + fyry, + fzrzz J

The viscous terms are

(2.20)

(2.21)

(2.22)

(2.23)

Recalling equation (2.9) and applying the coordinate transformation to it, the shear stress tensor
is

\ t, xi( O_k O_kOuj ,-,c_kO_kOui) (2.24)_-_j = v . -a-z_ + -_z j "
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Substituting equation (2.24) into the equation for _7. in (2.22) yields

0

Ozi Oz, 0_---_+ Oxi Ox O_k
Orl O_ Ov Orl

o_5o_h ow o__o_ _
Oxi Oxi 0_--_+ Ozi Oz O_k

where

V _ + V _ . V rl --_ + V rI . V f -_ ] I rn D

Ou _ Ov Ow
+ (_-g_, + _o_, + _"_)

2

i 0 0 0

Im= 0 1 0 0
0 1 0

0 0 1

If an orthogonal coordinate system is assumed, then

Then all the viscous terms become

/:_=j

v {(_2
L=j

V(i.V(j = O; for i # j

2 - 2,lmOD Ou _ Ov Ow
(_ 2 + _, + ez ) -_ + (e_-g(,,+ _o_, + _ )

O D Ou Ov Ow

+ f 2 )ImOD Ou Ov Ow+_/ _ + (_, +_ +_)

0_.
Oy

2

oo

}
}
}

(2.25)

(2.26)

For constant v (i.e., laminar flow), the contribution by the second term in parathensis

in the above equation will approach zero as the steady state is reached and equation (2.3) is
numerically satisfied.



NUMERICAL ALGORITHM

Time-Advancing

The numerical algorithm used to advance equation (2.19) in time is an implicit, nonit-
erative, approximately factored, finite-difference scheme by Beam and Warming (ref. 24). The
time-differencing used by this scheme is generally known as the trapezoidal rule and is given by

b ''+1 = D" + y _ + _ + O(Ar 3) (3.1)

where the superscript n refers to the n th time-step. The finite-difference form of equation (2.19)
is

6_b + 6_(k - k_) + 6,(k - &) + 6_(G - G_) = 0 (3.2)

where 6¢ is the finite difference operator for a_0_, for example. /_, ?, and G are given by equation

(2.21) and /_., ?,,and C, are given by equation (2.26). By substituting equation (3.2) into

equation (3.1) and using D =/)g, one obtains

D'_+' + AT Jn+' [6_(/_- _,)"+' + 6,7(?- ?,,)"+' + 6¢(0- (_,,)"+']
2

jn+l Dn

- " j"+' - L,)" + 6.(? - &)" + 6 (d - d,,)"]
J" 2

(3.3)

The problem is to solve for D "+], and this is nonlinear in nature since /_.+1 = _(D,+]) is a

nonlinear function of D n+l as are ?'_+] and _n+]. The following linearization procedure is used.

A local Taylor expansion about u n yields

/_.+1 =/_. +/i.(D-+l _ D") + O(Ar 2)

?.+1 = ?. + h.(D.+] _ D") + O(AT 2)

(_.+1 = _. + _n(D.+, _ D") + O(Ar 2)

(3.4)

where A, /}, and C are the Jacobian matrices

OD' OD' OD
(3.5)

To evaluate these, recall that

P

u + _
V

W

u2+p

t$13

UW

+
UU

v2+p

1)W

WU

WU

w2+p



Then

1 U + _.u _uu _.u
ft = -j I _ Gv U + _yv Gv

I.G Gw _w u + Gw

(3.6)

where

U = _t + _xu + _yv + Gw

/_ and C are obtained in a similar manner, and all three can be represented by the following,

where Ai = _i,,/_, or C for i = 1,2, or 3, respectively.

Lo L,_ L2_ La_

1 L1 Q + Llu Luu L3u
A'= J L2 L,v Q+L2v L3v

L3 Llw L2w Q + L3w

(3.7)

where

Q = Lo + Llu + L2v + L3w

Lo = (_i)t, LI = (_i)_, L2 = (_i)u, L3 : (_i)z

Substituting equation (3.4) into equation (3.3) results in the governing equation in delta form

{I+_-ArJ'_+' [6_(_n _ F,)+ 8,7(/_/'_ - F2) + 8¢(£7 '_ - F3)] } (D n+'- D '_)

-_ \ jn

(3.8)

where

r_D.+_ = _2+,, ruD.+_ : 1_:+1, FzD.+I = _+1

At this point it should be noted that the notation of the form [g_(A - F)]D refers to a-_-_(AD) -
OA 01'

_(FD) and not _-_D- _D.

Approximate Factorization

The solution of equation (3.8) would involve a formidable matrix inversion problem.
With the use of an ADI (alternating direction implicit) type scheme, the problem could be reduced
to the inversion of three matrices of small bandwidth, for which there exist some efficient solution

algorithms. The particular ADI form used here is known as approximate factorization (ref. 24).
Using this, the governing equation becomes

L_L,L_(D _+1 -D _) = RHS (3.9)
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where

AT J_+_e(¢i" - r_) ]L_= I+ 2

Ar J'_+'/i,7(/_n- r,)]L,= I+ 2

L_= !+ 2 _(d '_-r_)

(3.10)

and RHS is the right-hand side of equation (3.8). When second-order central differencing is
used, the solution to this problem becomes the inversion of three block tridiagonal matrices. The
solution procedure is to solve these three problems

(Ln)AD = RHS

(L_)Ab=AD

(L_)AD "+1 = A/).

(3.11)

As an example of one of the inversions, the procedure is illustrated for the f-sweep, when (I +

½ArJ'_+Is_C)AD = A/) is solved for AD, and C = _n_ F3. The computational domain indicies

used are j, k, and ! for the _,rl, and f directions, respectively. Then using an LU decomposition,
the following matrix equation is solved once for each j = 1 to jmax and k = 1 to kmax.

I 0 0

-Cj,k,_ I Cj,k,3

0 --Cj,k,2 I

o ,.

0

Abi,k,2

A b j,k,3

0

.°. 0

0 ... 0

Cj,k,4 • • • 0

C.7,k,l_,,=- 2 I Ci,k,lma_:

0 0 I

A Dj,k,l

ADj,k,2

ADi,k,3

A Dj,k,lmaz
(3.12)

where

= - r3)
4

is given by equation (3.7) with i = 3, and r3 is given by equation (3.15)•
Using this implementation, there will be no change in the variables at the boundaries,

and the boundary conditions can be implemented explicitly. It is possible, however, to implement
the boundary conditions implicitly, and this will be discussed in a later section.

The factorization has introduced the following second-order cross product term into the

equation:

h 2 [lf_Aif,TB + 6nB_C + _C_f_A] AD + O(h 3) (3.13)
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where
A = zi. '_ - F1, B =/_n _ r2, c -- _,n _ F3, h = --ATJ n+l

2

To maintain the second order accuracy of the scheme, the added terms must be kept smaller
than the original terms in the equations everywhere in the computational domain. This puts a
restriction on the size of the artificial compressibility parameter/_. The proper choice of/_ will be
discussed in a later section. In applying the approximate factorization scheme, it has been found
that the stability of the scheme is dependent on the use of some higher-order smoothing terms.
These are used to damp out higher frequency oscillations which arise in the solution because of
the use of second-order central differencing, and will be discussed in the following section.

Higher-Order Smoothing

Higher-order smoothing terms are required to make the present algorithm stable. These
terms help to damp out the higher order oscillations in the solution that are caused by the use of
second-order central differencing. The smoothing term is derived in conjunction with an upwind

0,, which is given asfinite-difference approximation to

(3Uj-4Uj_l+Uj_2)
Vxu = 2Ax

(-3uj+4Uj+l-ui+2)
2Ax

for u>O
(3.14)

for u<0

where uj = u(jAx). This equation can be written, for all u

1

Vzu -- 4Ax[(3u j - 4ui-1 + uj-2) + (--3u_ + 4Uj+l - u)+2)]

U

4lulAz[(3u J - 4u)-l + uj-2) - (-3u 3 + 4u_+l - u_+2)]

(3.15)

Replacing the first [ ] term of the above equation by a central difference formula results in

1 u

V_u-2Ax(UJ+,-u:-,)+4lulAx(UJ-2-4uj_l+6uj-4u.i+l+u_+2 ). (3.16)

This suggests that the proper form of the higher-order smoothing term should be that of the
second term on the right-hand side of equation (3.16). This fourth-order term is represented
using first-order upwind and downwind finite-difference operators

(VzAz)Zu _ 1
4Ax (UJ_2 - 4uj__l + 6u) - 4uj+1 + uj+2) (3.17)

Similarly, by starting with a first-order upwind equation, a second-order smoothing term can be
derived

1

VzAzu - 2Ax (UJ+' - 2u 3 + us_,) (3.18)

To compare how a small perturbation u _ would act under the influence of each of these smoothing
terms the following equation is used. Moving with the fluid, the perturbation under second-order
smoothing is given by

Ou' 02u '
c -0

Ot c3x 2

12



whosesolution is
u' = e-_"'t(ae _ + be -ic'z)

Under forth-order smoothing the perturbation is governed by

(_t _4_t

--+_ -0
Ot 0X 4

whose solution is

u' = e-ea't(aei_ + be -i_)

Under the second-order smoothing, the lower frequency perturbations (c_ < 1) will be

damped out faster than they will be with the fourth-order smoothing. For higher-frequency
perturbations, the fourth-order smoothing will be more effective in damping the perturbation.

To preserve the tridiagonal nature of the system, only second-order smoothing is used
on the left-hand side of the equation, and fourth-order smoothing is used on the right-hand side.

The equation to be solved now becomes

I + h_5{(ft n - El) + eiV{A{]

[I + hS_ (C'' - r3)+ ,iV,A, ](D ''+1 - D n)

= RHS- ,, [(V_A_) 2 + (VnA,) 2 + (V_A_) 2] D"

(3.19)

where ei and ee are implicit and explicit smoothing parameters. There is a good discussion on
the characteristics of these parameters by Chang et al (ref. 27). For this analysis they assumed

a perturbation p_ given by

pt({,r) = f(r)e '_

where { is the free-stream direction. It was found that in order to damp out the numerical
fluctuations as time advances, the smoothing parameters must satisfy

Employing discrete Fourier analysis, a necessary condition on these coefficients can be derived,

namely
_i > 2ee (3.21)

However, the exact relation between these two coefficients can only be determined by a nonlinear
stability analysis. For the results given in this paper, e, is taken to be 0.3 and e_ is 0.1 for the
smoothing on the velocity components. For the smoothing on the pressure, larger values are
usually used. This will be discussed further in a following section.

Boundary Conditions

An important part of any computer code is the proper implementation of boundary
conditions. The code must be capable of handling the several different types of boundaries
encountered in numerical simulations which include solid surface, in-flow and out-flow, and far-
field boundaries.
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Solid Surface

At a solid surface boundary, the usual no-slip condition is applied. In general the grid
point adjacent to the surface will be sufficiently fine so that constant pressure normal to the
surface in the viscous boundary layer can be assumed. For a f = constant surface, this can be
expressed as

=0 (,,,>
L=I

This boundary condition can be implemented either explicitly or implicitly. The explicit imple-

mentation uses equation (3.12) for the matrix inversion and then the pressure on the boundary
can be computed at the end of the time-step using a suitable finite-difference form of equation

(3.22)• The implicit implementation, however, will enhance the stability of the code• This can be
done during the _"sweep by replacing the first row of the matrix equation (3.12) with

IADj,k,1 + _ADj,k,2 = ] (3.23)

where

1oo!10 0 0

0 0 0

0 0 0

"PL=2 -- PL=I

0

0

0

In-flow, Out-flow and Far-field Conditions

The in-flow and out-flow boundary conditions for an internal flow problem and the far-
field boundary conditions for an external flow problem can be handled in much the same way.
The incoming flow for both problems can be set to some appropriate constant as dictated by the
problem. For example, at the inlet to a pipe, the pressure can be set to a constant and the velocity
profile can be specified to be uniform. The conditions at the downstream however, are the most
difficult to provide. Simple upwind extrapolation is not well-posed. The best convergence rate is
obtained if global mass is conserved. So to ensure the best results, the velocities and pressure are
first updated using a second-order upwind extrapolation. For an exit at L = lmax this is

Qn+, _irnax--1 \ Azl lrnax--2
: (3.24)Q _,_ z___ _ 1

Azj

where
Az 1 = Zlrna x - Zlrnax_ 1

Az 2 = Zlrna z - Zlrnax_ 2

Then, these extrapolated velocities are integrated over the exit boundary to obtain the outlet
mass flux

• J_e t7'_ d_t. (3.25)rnou t =

sit

Then the velocity components are weighted by the mass flux ratio to conserve global mass

_ m.,
mout

(3.26)
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If nothing further is doneto update the boundary pressure,this can lead to discontinuities in the
pressurebecausemomentum is not being conserved. A method of weighting the pressureby a
momentum correction waspresentedby Chang et al (ref. 27). They use the following to obtain
a pressurewhich correspondsto the massweighted velocities

pn+l = ph L [(wW) n+l _ (wW) fi] .__ _z(V_-. V_') _ -
fz

(3.27)

where W is the contravariant velocity given by Eq. (2.20). In obtaining this formula, it has
been assumed that the streamlines near the exit plane are nearly straight. Any appreciable

deviation will cause a discontinuity in the pressure and may lead to an instability. To avoid
this, a momentum weighted pressure was used. This was obtained by integrating the momentum

corrected pressure pn+l and the extrapolated pressure pa across the exit

t

: L pn+lda
- _xit

a fe p_dh.Ip : zit

(3.28)

The final outlet pressure is then taken to be

+1
pn+l = p_. (3.29)

Using these downstream boundary conditions global conservation of mass and momentum are
ensured and the scheme will not introduce instabilities into the flow field.

PSEUDOCOMPRESSIBILITY

In an incompressible flow, a disturbance in the pressure causes waves which travel with
infinite speed. Introducing pseudocompressibility results in waves of finite speed, where the mag-
nitude of the speed depends upon the pseudocompressibility constant 8. In a true incompressible
flow, the pressure field is affected instantaneously by a disturbance in the flow, but with pseu-
docompressibility, there will be a time lag between the flow disturbance and its effect on the
pressure field. In viscous flows, the behavior of the boundary layer is very sensitive to the stream-
wise pressure gradient, especially when the boundary layer is separated. If separation is present,
a pressure wave traveling with finite speed will cause a change in the local pressure gradient which
will affect the location of the flow separation. This change in separated flow will feed back to the

pressure field, possibly preventing convergence to a steady state.

Characteristics of The Pressure Wave

To analyze the behavior of this pressure wave and obtain the pseudo sound speed, a
one-dimensional form of the governing equations is used
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ap au = 0
a_ + #a_
au Ou 2 ap

a-t + ax ax r_

(4.1)

where _'w is the normalized shear stress at the wall. For the purpose of finding the pseudo sound
speed, the shear stress is neglected. If the sound speed is denoted as c, and x denotes the position
of the pressure wave, then an upstream traveling wave is moving at a speed of c - u. During a
short time interval At, the wave will travel a short distance Ax. As At approaches zero,

ax

--=c-u
Ot

and

au auax_(c_u) au
-at - am at a--x

Op Op ax _ (c apat - -_=_ - u)az

Substituting this into equation (4.1) and solving for c leads to

(4.2)

c : V_ + # (4.3)

The pseudo Mach number can be defined

tL U

M - - (4.4)
c v/_+#

which is always less than one for any # > 0. This is a necessary condition so that the pressure
wave will propogate upstream and effect the whole flow field.

Wave-Vorticity Interactions

In their paper, Chang and Kwak (ref. 28) presented an analysis of the interaction
between the finite-speed pressure wave and the development of the boundary layer in order to set
a theoretical lower limit for ]3. Their analysis is summarized here. The wave has to travel fast

enough to allow proper distribution of the pressure while the boundary layer develops. In their
analysis the following equations are obtained from equation (4.1) by linearizing the momentum
flux locally, and cross differentiating

02P + 2/)0 02p O_p OTw
at----5 ataz # _ : #

02u - O_u 02u Orw

at-Z+ 2Uoa--VO-xZ _ - aT

(4.5)

which can be written as

+ (Oo+_)_ 0](:)+ (0o - c)_
Ot

(4.6)
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where c is the pseudo sound speed in equation (4.3) and f)0 is the mean velocity in the primary
flow direction.

If the right-hand side of equation (4.6) is neglected, the result would be the characteristic

equations for two families of linear waves

_+(u+c)_ u+ =0

[0 0_ + (,_-c)_ u-

(4.7)

The (+) family of waves propagate downstream with a velocity of c + u, and the (-) family of
waves propagate upstream with a velocity of c - u.

If the shear stress term is included, then there is a coupling between the pseudo pressure

waves and the vorticity spreading since the shear stress depends on the velocity field. Since the
upstream traveling waves travel more slowly, these will be studied. For these waves, the coupling

may be described by

Ou- 0u- 0r (4.8)
0--i-+ (u - _) 0--_-: - 0-7

To investigate the coupling effect, the problem of a flow through a channel of width x._ I and
length L is considered. The wave with the lowest wave number and therefore a length scale of L
will be studied and so the following quantities will be used

x (u - _)t 4
_,=_, i- -L , tv=-_ee t

The rate of vorticity spreading for laminar flow is approximately given by

__d_2 ._ __4 (4.9)
dt Re

The scaled variable t. was chosen such that

Using these variables, equation (4.8) becomes

(4.10)

where r,, = r,,,(u, df(t,,)). In this equation, the two u- partial derivative terms are of order 1 and
the shear stress partial derivative term is of the order of 1 or less, depending on tl _ size of the
boundary layer. Therefore, the interactions between the waves and the vorticity can be decoupled
if the coefficient on the right-hand side of equation (4.10) is very small

[4L]Re(u-c) << 1 (4.11)

By plugging the expression for the pseudo sound speed into this equation and assuming the
normalized velocity of the primary flow u to be unity, the restriction for _ is obtained
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4L)2/3>> 1+ Re - 1 (4.12)

The physical meaning of this restriction can be thought of as follows. The time it takes an
upstream wave to travel the distance of the computational domain of length L is

L
TL -- " (4.13)

C--tt

Using equation (4.9), the time required for vorticity to spread a thickness/f is approximatly

Re62 (4.14)
T_ 4

If it is required that the pressure wave travel the full length of the computational domain before
the viscosity has diffused through the flow, then

TL < < T^ (4.15)

By substituting in equations (4.13) and (4.14) into equation (4.15) and taking if = x,, 4 = 1, the
restriction in equation (4.11) is obtained.

This analysis provides a lower bound for the choice of 3. For the upper bound of 3, the

error introduced by the approximate factorization will be considered. Recalling equation (3.13),
the form of the error is

This term must be kept smaller than the original terms in the equation. Including only the terms
which contain/3, this restriction can be expressed as

ArJ"+16 .4"_ _t" A

or

Arj,,+,6(j_,, < 1 (4.17)
2 J

Recalling the expression for .4:' given by equation (3.7), the terms which have 13 in them give the
following

/36,j \Ox, ] < 1 (4.18)

The term to the right of/3 in this inequality is essentially the change in _ in either the _, rl, or f
direction. An estimate of the order of magnitude of this term for the grids used in this study is
given by

o 7
\ Ox, ] J _ 2 (4.19)

18



which puts the restriction on 13
O(/3Ar) < 1 (4.20)

For most problems, the restrictions for 3 given by equations (4.12) and (4.20) are satisfied with
a value for d in the range from 1 to 10.

To test the validity of these restrictions, a test problem was run over a range of 3. The

problem used was flow through a two-dimensional channel with a width of 1 and a length of 15.
The prescribed inlet conditions were that of a uniform flow and a pressure of unity. The grid used,
shown in figure 1, has 31 points in the cross-stream direction, and 65 points in the streamwise
direction. The Reynolds number used is 1000 based on the duct width and inlet flow velocity;
the time-step used in the calculations is A_- = 0.1.

For a proper convergence, the above equations for the restrictions on 3 give the following

range
0.1236 < /3 < 10 (4.21)

To test these values, the problem was run for the five values of/3 = 0.1, 1.0, 5.0, 10.0, and 50.0.
The solution converged only for the cases of/3 = 1.0, 5.0, and 10.0. The converged velocity profiles
are shown for the case of/3 = 5.0 in figure 2.

The convergence history of the five cases is shown in figure 3. The log (base 10) of the
root-mean-square of the change in flow variables is plotted versus the computational time T. It
can be seen that the calculations for the cases of/3 = 0.1 and 50.0 become unstable within 100

time steps and blow up, whereas the other cases converge to a stable solution. This indicates
that the restrictions given in equations (4.12) and (4.20) are valid for this problem. In fact, these
restrictions have proven to be valid for all cases yet encountered with this code. In figure 4,
the effect of the various values of/3 on the incompressibility of the fluid is shown. The log of

the root-mean-square of the divergence of the velocity field is plotted versus time. Again, the
instability of the large and small/3 is seen, and the best convergence toward an incompressible

solution is given with 13 -- 5.0.
To illustrate the effect of the traveling pressure wave in the channel flow, the following

pressure contours are shown for the cases of/3 = 0.1 and /3 = 5.0. In figure 5, the contours are
shown for _3 = 5.0 at the computational times of 1.0, 2.5, and 4.0. The contours for/3 = 0.1 are
shown at the same times in figure 6. In both cases, it can be seen that the pressure is dropping
at the exit as the downstream boundary condition enforces conservation of global mass. For the

/3 = 5.0 case, these contours propagate upstream as time progresses and the proper pressure
drop begins to develop. For the/3 -- 0.1 case, however, the pressure gradient does not propagate
upstream nearly as fast. For this case at _ = 2.5, the pressure gradient remains large near the
outlet, the contours are not spreading upstream. The solution becomes unstable and this is shown
by the interesting pattern in the contours as the pressure develops discontinuities.

Effects of Smoothing on Pressure

The explicit smoothing has a large effect on the convergence and accuracy of the pseudo-
compressibility method. In particular, the explicit smoothing on the pressure can effect whether
or not the solution converges to an incompressible flow field. In their paper, Chan._ and Kwak

(ref. 28) showed that the pseudo pressure waves decay exponentially with time and _anish as the
solution converges. Thus the change in pressure with time approaches zero. When there is no
explicit smoothing added to the equation, as in equation (2.4), then the divergence of the velocity
field identically approaches zero. However, when explicit smoothing is included, as the change in
pressure approaches zero, the divergence of velocity approaches

V. I7 _ e._(1) [(V,A¢)2 + (V A ) 2 + (VcA¢)2] P
/3

(4.22)
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where e,,(1) is the explicit smoothing parameter for the pressure. When the pressure gradients
become substantial, as in the case when a region of separation is present, the smoothing term
does not approach zero and this contaminates the incompressibility of the solution.

To alleviate this problem, the value of e,:(1) is decreased with time. For the cases

illustrated in the previous section, e,.(1) was decreased by half of its value at every 50 time steps,
from a starting value of 0.12, which is why there are kinks in the convergence curves in figures 3
and 4. In this section, the same problem was used to illustrate the effect of the smoothing. For
these cases, an exponentially decaying value of _,_(1) was used

,_{1} : 1.Oe-'" {4.23)

for the values of a = 0.01, 0.05, 0.1, and 0.5. The results are presented in figures 7-10. Here,
the logs of RMSDQ, RMSCO, and RMSDIV are plotted versus time, where RMSDQ is the
root-mean-square of the change in the flow variables at every time step; where RMSCO is the

root-mean-square of the right-hand side of the continuity equation, which includes the divergence
of the velocity and the smoothing terms; and where RMSDIV is the root-mean-square of the
divergence of the velocity field.

Since the right-hand side of the continuity equation is equal to

(-BArdivl7 - smoothing terms)

then when fl = 5 and Ar = 0.1 and as the smoothing dies out, it is expected that RMSDIV
will approach 2.RMSCO. In figure 7, for the case of a = 0.01, RMSCO rapidly converges but
the divergence does not as it is being influenced heavily by the smoothing terms. In the next

figures, it is seen that as the smoothing approaches zero, then the divergence of the velocity field
converges at the same rate as RMSCO.

COMPUTED RESULTS

To test the accuracy of the code, two test problems are used. It was desired that both

an internal flow and an external flow be tested. The first test case is that of laminar flow through
a two-dimensional backward-facing step, the second is laminar flow around a two-dimensional
circular cylinder. Both of these cases have experimental data available for comparison, and both

have regions of separated flow which will test the ability of pseudocompressibility to distribute
the pressure in the pressence of a shear layer without causing an instability. Since the cylinder

flow is unstable for a Reynolds number greater than 40, the numerical solution will not converge
and a psuedo unsteady behavior will be observed.

Finally, a flow that is highly three-dimensional in nature is studied. For this, the flow
about a three-dimensional cylinder on a flat plate is used.

Backward Facing Step

The flow over a backward-facing step was computed and the reattachment length was
calculated for Reynolds numbers in the laminar range. The geometry of this problem is shown in

figure 11. Here, the Reynolds number is based on twice the step height. The upstream boundary
is located at the step and the inlet velocity profile there is prescribed to be a parabola (fully
developed channel flow). The computations were conducted using a 65 x 33 grid similar to that

shown in figure 1. The results of the experiment performed by Armaly et al (ref. 29) were used
as a comparison to judge the accuracy of the computations. They reported that the flow at the
step showed only a very small deviation from a parabolic profile, so that the placement of the
inlet at the step should not introduce a significant error.
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In the initial calculations, the code severely underpredicted the separation length at the
higher range of Reynolds numbers. However, because of the presence of the explicit smoothing
term in equation (4.22), the steady-state solution was not approaching a divergence free state.
After the explicit smoothing parameter for pressure was decreased with time, the following results
were obtained. In figure 12, the separation length versus the Reynolds number for three different

computational codes and the e::periment are plotted.
INS3D shows remarkably good agreement with the experimental results for the full range

of Reynolds numbers. The computations from the TEACH code were performed by Armaly et al

(ref. 29) to coincide with their experimental results. The number of grid points they could use
was limited by their computer's core memory, and they claim this could explain the discrepancy
between their numerical results and the experimental results for the higher Reynolds numbers.
The data from Kim and Moin (ref. 21) are the results of running their fractional step code with
the same boundary conditions and number of grid points that were used to run INS3D. Their
code uses an approximate factorization scheme and solves a Poisson equation for pressure using
a direct method based on trigonometric expansions. They use a staggered grid and the code is
written for a uniform Cartesian mesh.

In the INS3D calculations, opposite wall separation was present for Reynolds numbers

of 500 and greater, which agrees with the results of the experiment. As in the case where the
results were reported by the experiment, the opposite wall separation begins upstream from
the reattachment point of the primary separation, and ends downstream from it. However, the

magnitude of the computed opposite wall bubble is smaller than that found in the experiment.
For the range of Reynolds numbers from 500 to 800, the length of this bubble was computed to be
from 1 to 4 step-heights. The size in the experiment ranged from 5 to 8 step-heights in this range.
Kim and Moin reported 7.8 step-heights for a Reynolds number of 600 and 11.5 step-heights for

the 800 Reynolds number case.
To compare the efficiency of the fractional step code with the INS3D code, the computing

times used to solve the backward-facing step problem are presented in table 1. The convergence

criteria were equivalent for the two cases. The computations were performed on a Cray X/MP
and the times are given in units of CPU seconds. The calculation times for the two codes are

comparable, with INS3D being a little more efficient.

Table 1,-COMPUTING TIME FOR BACKSTEP PROBLEM.

Reynolds Number INS3D Fractional Step

100

200

300

400

500

600

700

8OO

120

121

155

230

604

614

582

601

92

186

315

491

649

718

803

867

In the next two figures, the results of INS3D's calculations for a Reynolds r ,tuber of 700
are shown. In figure 13, the streamlines are plotted, and in figure 14, velocity profiles at various

points in the flow are shown.
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Circular Cylinder

The flow around a two-dimensional circular cylinder is rich in fluid physics. This flow

is generally found to be steady for a Reynolds number less than 40 (ref. 30). Calculations for
a Reynolds number of 40 have been carried out using INS3D and reported by Kwak et al (ref.
25). The quantities they reported include the wake length, L_ake; the separation angle, 0aep;
the pressure drag, Cap; and the pressure coefficients at the forward and rear stagnation points,
Cp/and Cp_. All these quantities were in good agreement with a summary of experimental results
found in literature and are repeated in table 2 for reference.

Table 2r CIRCULAR CYLINDER FLOW AT RE = 40.

Cdp

Cpf

Cpr

Osep

Lwake

Summary

of

literature

0.93-1.05

1.14-1.23

-0.47- -0.55

50 ° -53.9 °

1.8-2.5

INS3D

1.03

1.15

-0.51

52 °

1.9

Impulsively Started Symmetric Flow

The development of the symmetric wake for an impulsively started circular cylinder was
computed. The 120 by 85 grid shown in figure 15 was used for these calculations. The flow
visualization results compare well with that of an experiment. In figure 16, the wake behind an
impulsively started cylinder at a Reynolds number of 1200 is shown at nondimensional times of

1.1, 1.3, 1.9, 2.4, 2.9, and 3.1 for both the experiment of Nagata et al (ref. 31) and the calculations
of INS3D. The time-step used in the computations was 0.02. The similarity is striking, not only
in the growth of the primary separation regions, but also in the appearances of two secondary
bubbles near the point of separation.

Bouard and Contanceau (ref. 32) also presented experimental results for an impulsively
started circular cylinder. For the range 800 < Re < 5000, they noted what they call phenomenon
a. First, for r > 1, near the wall and about half-way between the stagnation and separation

points a bulge appears forcing the streamlines out from the wall. They noted that this bulge
develops into a little secondary eddy by r > 1.5. The very beginnings of this bulge can be seen
in the computed streamlines at r : 1.3, and the secondary eddy is developed by r = 1.9. In
the experiment they noted that the eddy grows to touch the outer boundary of the primary
eddy, splitting off another small eddy from the primary eddy. This new eddy is equal in size and
strength to the secondary eddy, thus there is a pair of secondary eddies formed. This can clearly
be seen in the next three pictures of the computed streamlines. These same features have also

been experimentally observed by Honji & Taneda (ref. 33), and Taneda (ref. 34), and numerically
by Thoman & Szewczyk (ref. 35), and more recently by Loc (ref. 36), and Lecointe & Piquet
(ref. 37).

Vortex Shedding

Even though the present algorithm is designed for obtaining steady-state solutions,
pseudo-unsteady characteristics are examined in this section. In order to observe periodic behav-
ior in the wake of the cylinder, it was necessary to introduce a perturbation in the flow field. For
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this, surface roughnessequal to 2% of the diameter was applied to one side of the body. Once
the periodic motion had started, no further disturbance was needed to continue to shedding, and
a smooth grid was used for further calculations. The calculations were carried out at a Reynolds
number of 1200, for which a Strouhal number in the range of 0.17 to 0.2 (ref. 30) has been found

in experiment. Using a time-step of 0.01, the calculated Strouha] number varied from 0.357 to
0.303 depending on what mesh was used. The value of 0.303 was obtained on the finest mesh
used, that being 140 by 120. The lift and coefficient of pressure drag versus time are shown in

figures 17 and 18, respectively, starting at a time when the smooth grid was used. These are the
calculations for the 120 by 85 grid and the Strouhal number based on the frequency of the pres-
sure drag over this time interval is 0.357. Since the calculations never approach a steady state,
the pseudo pressure waves never die out, and the calculated flow will not become completely
divergence-free. For these calculations, the root mean square of the divergence of the velocity
field had an average value of 0.02, so it is not surprising that the calculations did not predict the
correct Strouhal number. However, the phenomenon of vortex shedding is qualitatively shown by

this method of computation.
Streamlines at different times in the period are shown in figure 19 at times of 10.4, 11.1,

11.8, 12.5, and 13.3. At r = 10.4, both the lift and drag are at a maximum, and it can be seen
that a vortex is about to be shed from the upper half of the cylinder. Here it can be seen that
the core streamlines on the top surface fully encircle the separated region and travel all the way
to the lower half before starting downstream. At the next time frame, the separated region has

begun to open up, and the lift starts to drop but it is still positive. In the next frame, the lift is
nearly zero, and the drag is at a minimum. In the next frame the lower separated region begins
to form and the lift is becoming negative, while the drag begins to increase. In the last frame,
the lift has just turned past the minimum, and the streamlines are almost a reversed image of
the first frame.

Three-Dimensional Calculations

The code INS3D has been used to calculate the flow for several different complex three-

dimensional objects including a geometry used to model the Space Shuttle Main Engine (refs 25

and 27). As an example of the three-dimensional capability, the flow is calculated for the problem
of two parallel plates with a cylinder normal to the plate surface attached between the two
plates. This geometry is similar to a flow in the Space Shuttle Main Engine where hot hydrogen

gas under high pressure is flowing around posts which carry liquid oxygen. Since the flow is
symmetric about the center plane between the plates, only one plate with half the cylinder will
be used in the calculations. The inflow is prescribed to be a parabolic profile, and the Reynolds
number is based on the average inflow velocity and the diameter of the cylinder. The grid and
inflow are shown in figure 20, with a close up of the grid spacing at the cylinder-plate junction

shown in figure 21.
The solution to this problem was found to be steady, and some interesting features

of the flow were found in the calculations. A saddle point of separation and a nodal point of

reattachment appeared in front of the cylinder as shown in figures 22 and 23. Figure 22 is a top
view of the velocity vectors in the z plane next to the wall at z/D -- 0.02, where D is the diameter
of the cylinder. The saddle point of separation appears at y/D : -2.9, and the nodal point of

reattachment is at y/D - -0.56. Figure 23 is a side view of the velocity vectors in the plane at
x/D - 0.0. Figure 24 shows particle traces of the computed flow for particles released on either
side of the x/D -- 0.0 plane. Particles which are released near the region of the separated flow
between the saddle point of separation and the nodal point of reattachment show the presence of
a horseshoe vortex. Particles released between the nodal point of separation and the body show
the existance of a pair of spiraling vortex filaments which wrap around the cylinder and spiral

upward. This secondary vortex has a sense opposite that of the horseshoe vortex.
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CONCLUSION
An incompressibleflow solver has been developedwhich is capable of computing the

steady-state solution to a realistic three-dimensionalgeometry. Pseudocompressibilityhas been
found to be anefficient way to solvethe pressurefield, and although this limits the time-accuracy,
it iscapableof showingthe qualitative nature of an unsteadyproblem. The ability of this method
to perform well dependsheavily on the proper choiceof the pseudocompressibilityconstant 8.
This paper has presentedan analysisof the effect on the calculations of using different values
of 8, and on this basishas presentedguidelinesfor the proper choiceof 8. Theseguidelinesare
substantiatedwith examplecalculations. The accuracyof the method is affectedby the amount of
smoothing used,and whereasthe algorithm requiressomesmoothing for stability, by decreasing
the smoothing asa steadystate isreached,accuratesolutions to the incompressibleNavier-Stokes
equations can beobtained. The computing time has beenshownto be resonablewhen compared
to another method which useda similar algorthim for its solution process.Finally, the codewas
shown to be able to solve a three-dimensionalproblem with somevery interesting and complex
fluid phenomena.

Sucha codecould be a valuable tool for many engineringproblems, particularly if some
more study of the time-accuracy of the method weredone. It is possiblethat an iterative-type
schemecould help reducethe divergenceof the velocity field at the end of eachtime-step. Such
a schemeshould besimilar to the fractional step method iterations shownin equations (1.1) and
(1.2). This iteration would be very much like artificial compressibility in that there would be
artificial pressurewavesdistributing the pressure. If the iterations were carried out until they
converged, this would correspond to the waves dying out completely, and the flow would be
divergence-free.However,insteadof iterating until the flow field is completely divergent-free,the
iterations could be allowed to stop after the divergenceof the velocity has been reducedby an
order of magnitude or so. Through testing, a criteria could be found as to how much iterating
must be done to get a desired level of quantitative accuracy. In other words, the way for the
artifical compressibility to obtain time-accurateanswersis to let the pressurewavestravel further
for eachtime-step than they do in the current one-stepformulation.
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Figure 16a Experimental pictures and computational streamlines for an impulsively started cylinder
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Figure 19 Streamlines of periodic flow past a cylinder.
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